skip to main content


Search for: All records

Creators/Authors contains: "Braunagel, Michael J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Formation and evolution of the basal layer in large landslides has important implications for processes that reduce frictional resistance to sliding. In this report, we show that zircon geochronology and tectonic provenance can be used to investigate the basal layer of the gigantic-scale Markagunt gravity slide of Utah, USA. Basal layer and clastic injectite samples have unique tectonic chronofacies that identify the rock units that were broken down during emplacement. Our results show that basal material from sites on the former land surface is statistically indistinguishable and formed primarily by the breakdown of upper plate lithologies during sliding. Decapitated injectites have a different tectonic chronofacies than the local basal layer, with more abundant lower plate-derived zircons. This suggests clastic dikes formed earlier in the translation history from a structurally deeper portion of the slide surface and a compositionally different basal layer before being translated to their current position. 
    more » « less
  2. Abstract

    Brittle fracture propagation in rocks is a complex process due to significant grain‐scale heterogeneity and evolving stress states under dynamic loading conditions. In this work, we use digital image correlation and linear elastic fracture mechanics to make instantaneous measurements of the opening (mode I) and in plane shear (mode II) components of the stress intensity field during dynamic mixed mode crack initiation and propagation in crystalline and granular rocks. Both rock types display some similar fracture behaviors as observed in engineered materials, including rate dependent fracture initiation toughness and a direct relationship between propagation toughness and crack velocity; however, measured propagation toughness is higher than quasi‐static values at crack velocities well below the branching velocity in both rocks. Additionally, due to grain scale controls on the fracture process, mixed mode crack propagation is fundamentally different between these two rock types. Mixed mode propagation is energetically more favorable than pure opening mode propagation in sandstone, while the opposite is true in granite. Furthermore, following initiation, propagation in granite occurs so as to minimize the mode II contribution, irrespective of the initiation conditions, while fractures in sandstone maintain a non‐negligible mode II contribution during propagation across the sample.

     
    more » « less
  3. Abstract

    The physical processes that facilitate long‐distance translation of large‐volume gravity slides remain poorly understood. To better understand these processes and the controls on runout distance, we conducted an outcrop and microstructural characterization of the Sevier gravity slide across the former land surface and summarize findings of four key sites. The Sevier gravity slide is the oldest of three mega‐scale (>1,000 km2) collapse events of the Marysvale volcanic field (Utah, USA). Field observations of intense deformation, clastic dikes, pseudotachylyte, and consistency of kinematic indicators support the interpretation of rapid emplacement during a single event. Furthermore, clastic dikes and characteristics of the slip zone suggest emplacement involved mobilization and pressurized injection of basal material. Across the runout distance, we observe evidence for progressive slip delocalization along the slide base. This manifests as centimeter‐ to decimeter‐thick cataclastic basal zones and abundant clastic dikes in the north and tens of meters thick basal zones characterized by widespread deformation of both slide blocks and underlying rock near the southern distal end of the gravity slide. Superimposed on this transition are variations in basal zone characteristics and slide geometry arising from interactions between slide blocks during dynamic wear and deposition processes and pre‐existing topography of the former land surface. These observations are synthesized into a conceptual model in which the presence of highly pressurized fluids reduced the frictional resistance to sliding during the emplacement of the Sevier gravity slide, and basal zone evolution controlled the effectiveness of dynamic weakening mechanisms across the former land surface.

     
    more » « less